Entradas

Mostrando entradas de julio, 2017

PERDIDA DE ENERGÍA EN TUBERÍAS

Imagen
4.1 PERDIDA DE ENERGÍA EN TUBERÍAS La pérdida de carga en una tubería o canal es la pérdida de presión que se produce en un fluido debido a la fricción de las partículas del fluido entre sí y contra las paredes de la tubería que las conduce. Las pérdidas pueden ser continuas, a lo largo de conductos regulares, o accidentales o localizadas, debido a circunstancias particulares, como un estrechamiento, un cambio de dirección, la presencia de una válvula, etc. 4.1.1  LÍQUIDOS Las pérdidas de carga en un conductor rectilíneo o pérdidas primarias son pérdidas de carga debidas a la fricción del fluido contra sí mismo y contra las paredes de la tubería rectilínea. Si el flujo es uniforme, es decir que la sección es constante, y por lo tanto la velocidad también es constante, el principio de Bernoulli, entre dos puntos puede escribirse de la siguiente forma: 4.1.2 VAPORES Y GASES El diámetro de una tubería para conducción de gas se escoge en función de la densid...

3. LEY DE CONSERVACIÓN DE MASA

Imagen
El primer principio de la termodinámica o primera ley de la termodinámica1 es un principio que refleja la conservación de la energía en el contexto de la termodinámica. El trabajo de la conexión adiabática entre dos estados de equilibrio de un sistema cerrado depende exclusivamente de ambos estados conectados. Este enunciado supone formalmente definido el concepto de trabajo termodinámico, y sabido que los sistemas termodinámicos sólo pueden interaccionar de tres formas diferentes (interacción másica, interacción mecánica e interacción térmica). En general, el trabajo es una magnitud física que no es una variable de estado del sistema, dado que depende del proceso seguido por dicho sistema. Este hecho experimental, por el contrario, muestra que para los sistemas cerrados adiabáticos, el trabajo no va a depender del proceso, sino tan solo de los estados inicial y final. En consecuencia, podrá ser identificado con la variación de una nueva variable de estado de dichos sistemas, ...

CONSERVACIÓN DE ENERGÍA

Imagen
2.3 CONSERVACIÓN DE ENERGÍA La ley de la conservación de la energía afirma que la cantidad total de energía en cualquier sistema físico aislado (sin interacción con ningún otro sistema) permanece invariable con el tiempo, aunque dicha energía puede transformarse en otra forma de energía. En resumen, la ley de la conservación de la energía afirma que la energía no puede crearse ni destruirse, solo puede cambiar de una forma a otra, por ejemplo, cuando la energía eléctrica se transforma en energía calorífica en un calefactor. En termodinámica, constituye el primer principio de la termodinámica (la primera ley de la termodinámica). En mecánica analítica, puede demostrarse que el principio de conservación de la energía es una consecuencia de que la dinámica de evolución de los sistemas está regida por las mismas características en cada instante del tiempo. Eso conduce a que la "traslación" temporal sea una simetría que deja invariante las ecuaciones de evolución del si...

2. CONSERVACIÓN DE MASA

Imagen
2.1 CONSERVACIÓN DE MASA  En una reacción química ordinaria, la masa permanece constante, es decir, la masa consumida de los reactivos es igual a la masa obtenida de los productos». Una salvedad que hay que tener en cuenta es la existencia de las reacciones nucleares, en las que la masa sí se modifica de forma sutil, en estos casos en la suma de masas hay que tener en cuenta la equivalencia entre masa y energía. Esta ley es fundamental para una adecuada comprensión de la química.  2.2 CONSERVACIÓN DE MOMENTUM  Si hay dos cuerpos, el momentum total de ellos será p = p1 + p2. Ahora bien, la importancia de este concepto radica en lo siguiente: si el sistema de cuerpos está aislado, es decir, no actúan fuerzas externas sobre él, p es una cantidad que se conserva. Por ejemplo, si dos bolitas o carritos se mueven sobre una misma recta, en condiciones en que el roce pueda ser despreciado, el momentum total del sistema (p) permanece constante en el tiempo, pase lo qu...